MM74HC08 Quad 2-Input AND Gate

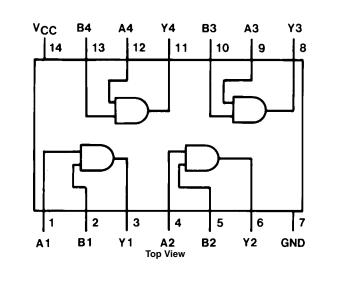
FAIRCHILD

SEMICONDUCTOR

MM74HC08 Quad 2-Input AND Gate

General Description

The MM74HC08 AND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. The HC08 has buffered outputs, providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.


Features

- Typical propagation delay: 7 ns (t_{PHL}), 12 ns (t_{PLH})
- Fanout of 10 LS-TTL loads
- Quiescent power consumption: 2 µA maximum at room temperature
- Low input current: 1 µA maximum

Ordering Code:

Order Number	Package Number	Package Description				
MM74HC08M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Wide				
MM74HC08SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
MM74HC08MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
MM74HC08N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. (Tape and Reel not available in N14A)						

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS005297

MM74HC08

Absolute Maximum Ratings(Note 1)

	-
(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin	
(I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

		Min	Max	Units		
Supply V	oltage (V _{CC})	2	6	V		
DC Input	or Output Voltage	0	V _{CC}	V		
(V _{IN} , V	out)					
Operating	g Temperature Range (T _A)	-40	+85	°C		
Input Ris	e or Fall Times					
(t _r , t _f)	$V_{CC} = 2.0V$		1000	ns		
	$V_{CC} = 4.5V$		500	ns		
	$V_{CC} = 6.0V$		400	ns		
Note 1: Absolute Maximum Ratings are those values beyond which dam-						

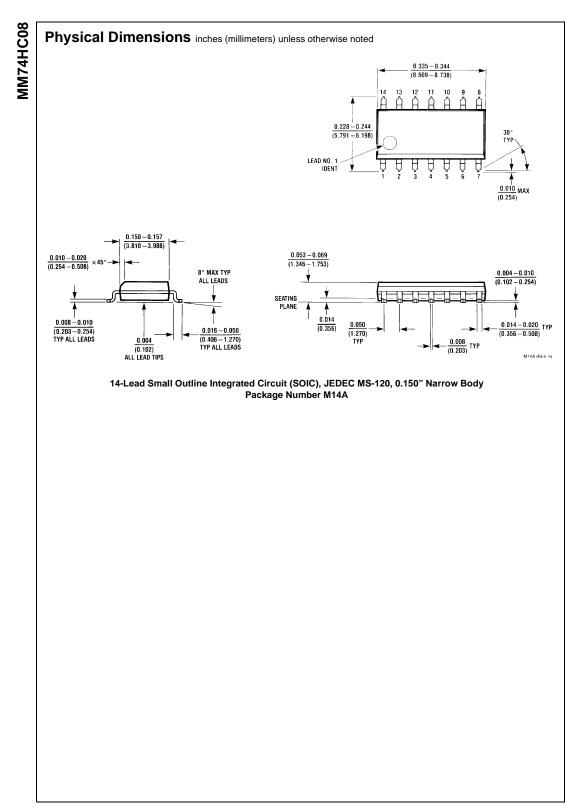
age to the device may occur.

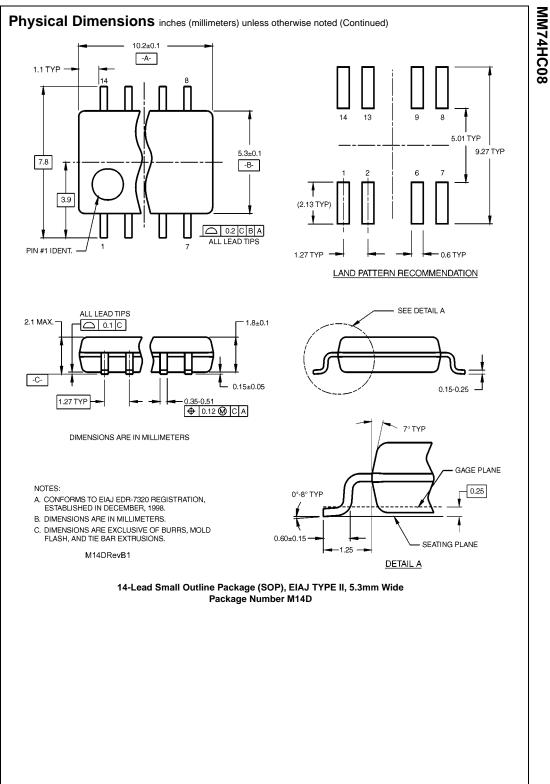
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

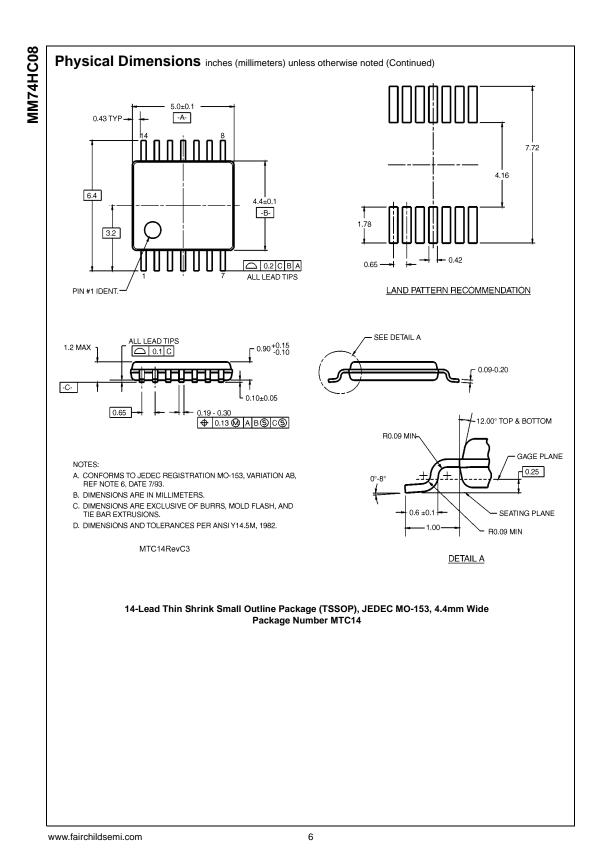
DC Electrical Characteristics (Note 4)

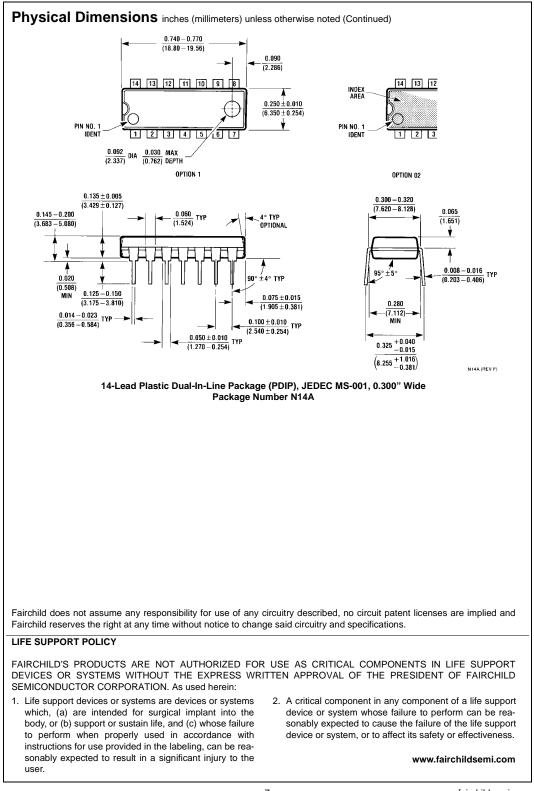
Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_{A}=-40$ to $85^{\circ}C$	$T_A{=}{-}40$ to $125^\circ C$	Units
Symbol				Тур		Guaranteed L	Units	
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μA
		$I_{OUT} = 0 \ \mu A$						
		•						•

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


$V_{CC} = 5V, T_{A} =$	= 25°C, C _L = 15 pF, $t_r = t_f = 6 \text{ ns}$				
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
PHL	Maximum Propagation		12	20	ns
	Delay, Output HIGH-to-LOW				
PLH	Maximum Propagation		7	15	ns
	Delay, Output LOW-to-HIGH				


AC Electrical Characteristics


 $V_{CC}\,{=}\,2.0V$ to 6.0V, $C_L\,{=}\,50$ pF, $t_r\,{=}\,t_f\,{=}\,6$ ns (unless otherwise specified)


Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40$ to $125^{\circ}C$	Units	
	Faranieter		•00	Тур	Guar	ranteed Limits	Units	
t _{PHL}	Maximum Propagation Delay,		2.0V	77	121	175	ns	
	Output HIGH-to-LOW		4.5V	15	24	35	ns	
			6.0V	13	20	30	ns	
t _{PLH}	Maximum Propagation Delay,		2.0V	30	90	134	ns	
	Output LOW-to-HIGH		4.5V	10	18	27	ns	
			6.0V	8	15	23	ns	
t _{TLH} , t _{THL}	Maximum Output		2.0V	30	75	110	ns	
	Rise and Fall Time		4.5V	8	15	22	ns	
			6.0V	7	13	19	ns	
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate)		38			pF	
CIN	Maximum Input Capacitance			4	10	10	pF	

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HC08 Quad 2-Input AND Gate